
High Performance Web Sites
14 rules for faster pages

Nate Koechley
natek@yahoo-inc.com

nate.koechley.com/blog
developer.yahoo.com/yui

Important Note:

During my session at the @media 2007 conference I
presented “12 Rules.” In the original presentation by Steve
Souders and Tenni Theurer, and in Steve’s forthcoming
O’Reilly book, there are 14 Rules. To keep things consistent
I’ve added the two missing rules back into this
presentation:

#12: Remove duplicate scripts

#14: Make Ajax cachable and small

By reinstating these two extra rules the numbering now
matches what you’ll find in the book. Conveniently, #12
(from my in-person presentation) is the only number
impacted by these additions.

Thanks!
Britpack Diamond Geezer Award

1. Explored memory footprint &
CPU impact
• Event & Object management

2. Introduced event delegation

3. Shared optimal file placement
• CSS at top (in <head>)
• JS at bottom (before </body>)

1. Share results of our research into
what impacts page performance.

2. Offer 12 specific rules to follow that
will make your sites immediately
and markedly faster.

—PPK on quirksmode.org:

“A case study in knowledge
sharing…Yahoo is firmly
committed to openness
and to discussing stuff
with the international
technical community.”

Why talk about
performance?

Steve Souders
Architect

souders@yahoo-inc.com

Tenni Theurer
Director

tenni@yahoo-inc.com

Yahoo! Exceptional Performance Team

Rough Cuts: Now

Amazon Pre-order: Now

Hardcopy: Sept 2007

Also, 3 hour workshop at
the upcoming:

http://www.oreilly.com/catalog/9780596514211/

Two
Performance
Flavors:

Response
Time
&

System
Efficiency

Our focus is Our focus is
on on response response
timetime of of web web
productsproducts

Do we care?

Does it
matter?

How much?

Is it worth it?

The Importance of Front-End
Performance

Back-end

= 5%
Front-end

= 95%

Even here, front-end = 88%

Back-end vs. Front-end

95%97%youtube.com

88%95%yahoo.com

88%80%wikipedia.org

86%96%myspace.com

95%97%msn.com

64%86%google.com

92%98%ebay.com

92%81%cnn.com

86%94%aol.com

86%82%amazon.com

Full CacheEmpty Cache

Until now our
optimization efforts
have targeted the
tip of the iceberg.

Foundational
Research:

Perception

perceived response time

what is the end user’s experience?

performance speed
enjoyable urgent instant

accelerate perception

snap achievement

better improve action

pleasant pace quick
promote swift cool

maximum drive prompt
advance fast hurry rush

satisfying feel exceptional

brisk rapid exciting

slow crawl boring snail

stagnant unexceptional
yawn unresponsive

impatient delay

moderate blah subdue
drag apathetic prolong slack

load sluggish sleepy late
unexciting reduced lag

complex heavy

unmemorable obscure

why wait

It’s in the eye of the beholder

1. Perception and usability are
important performance metrics.

2. More relevant than actual unload-to-
onload time.

3. Definition of "user onload" is
undefined or varies from one web
page to the next.

“80% of consequences come
from 20% of causes”

—Vilfredo Pareto

http://yuiblog.com/blog/2006/11/28/performance-research-part-1/

www.yuiblog.com

Cache

11
user requests

www.yahoo.com

22
user requests

other web pages

33
user re-requests
www.yahoo.com

Empty vs. Full Cache

11
user requests

www.yahoo.com

22
user requests

other web pages

33
user re-requests
www.yahoo.com

Empty vs. Full Cache

0 0.5 1 1.5 2 2.5 3

image
stylesheet

script
script

dns lookup
image
image
image
image
image

dns lookup
script

image
image
image
image
image
image
image
image
script

image
image
image
image
image
image
image
image
script

dns lookup
image
image

html
dns lookup

with an empty cache

11
user requests

www.yahoo.com

22
user requests

other web pages

33
user re-requests
www.yahoo.com

Empty vs. Full Cache

Empty vs. Full Cache

0 0.5 1 1.5 2 2.5 3

image
image

html

Expires header

11
user requests

www.yahoo.com

22
user requests

other web pages

33
user re-requests
www.yahoo.com

with a full cache

Empty vs. Full Cache

empty cache

2.4 seconds

full cache

0.9 seconds

83% fewer bytes

90% fewer HTTP requests

(sadly, the cache
doesn’t work as well
as we wish it did.)

How much does caching
benefit our users?

Q1: What % of users view a page
with an empty cache?

Q2: What % of page views are
with an empty cache?

Add a new image to your page

with the following response headers:

Expires: Thu, 15 Apr 2004 20:00:00 GMT
Last-Modified: Wed, 28 Sep 2006 23:49:57 GMT

}1 px

Browser Cache Experiment

Browser Cache Experiment

Two possible response codes:

200 – The browser does not have the
image in its cache.

304 – The browser has the image in its
cache, but needs to verify the last
modified date.

Browser Cache Experiment

total # of 200 responses
of 200 + # of 304

responses

Q2: What % of page
views are with an empty
cache?

unique users with at
least one 200 response

total # unique users

Q1: What % of users
view with an empty
cache?

}1 px

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

day of experiment

pe
rc

en
ta

ge

unique users with empty cache

page views with empty cache

Surprising Results

page views with
empty cache

40-60% ~20%

users with
empty cache

Experiment Takeaways

1. The empty cache user
experience is more
prevalent than you think!

2. Therefore, optimize for
both full cache and empty
cache experience.

http://yuiblog.com/blog/2007/01/04/performance-research-part-2/

Cookies

11
user requests

www.yahoo.com

Set Scope Correctly

HTTP response header sent by the web server:
HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Set-Cookie: C=abcdefghijklmnopqrstuvwxyz; domain=.yahoo.com

11
user requests

www.yahoo.com

Because broad scope adds up

22
user requests

finance.yahoo.com

HTTP request header sent by the browser:
GET / HTTP/1.1
Host: finance.yahoo.com
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; …
Cookie: C=abcdefghijklmnopqrstuvwxyz;

Impact on Response Time

80 ms delay dialup users

+78 ms156 ms3000 bytes

+63 ms141 ms2500 bytes

+47 ms125 ms2000 bytes

+31 ms109 ms1500 bytes

+16 ms94 ms1000 bytes

+1 ms79 ms500 bytes

0 ms78 ms0 bytes

DeltaTimeCookie Size

keep sizes low

Cookie Sizes across the Web

500 bytesMySpace

331 byteseBay

268 bytesMSN

218 bytesYouTube

184 bytesCNN

122 bytesYahoo

72 bytesGoogle

60 bytesAmazon

Total Cookie Size

Experiment Takeaways

1. eliminate unnecessary cookies

2. keep cookie sizes low

3. set cookies at the appropriate
domain (or sub-domain) level

4. set Expires date appropriately

http://yuiblog.com/blog/2007/03/01/performance-research-part-3

Parallel Downloads

Parallel Downloads

Two components in parallel per hostname

GIF GIF

GIF

GIF

GIF

GIF

per HTTP/1.1

Parallel Downloads

0 0.2 0.4 0.6 0.8 1 1.2 1.4

component
component
component
component
component
component
component
component
component
component

html

0 0.2 0.4 0.6 0.8 1 1.2 1.4

component
component
component
component
component
component
component
component
component
component

html

Two in parallel

Four in parallel

Eight in parallel

0 0.2 0.4 0.6 0.8 1 1.2 1.4

component
component
component
component
component
component
component
component
component
component

html

Maximizing Parallel Downloads

response time
(seconds)

aliases

Maximizing Parallel Downloads

response time
(seconds)

aliases

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 4 5 10

36 x 36 px (0.9 Kb) 116 x 61 px (3.4 Kb)

Maximizing Parallel Downloads

response time
(seconds)

aliases

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 4 5 10

average 36 x 36 px (0.9 Kb) 116 x 61 px (3.4 Kb)

Maximizing Parallel Downloads

response time
(seconds)

rule of thumb: use at least two but
no more than four aliases

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 4 5 10

average 36 x 36 px (0.9 Kb) 116 x 61 px (3.4 Kb)

Experiment Takeaways

1. consider the effects of CPU
thrashing

2. DNS lookup times vary across ISPs
and geographic locations

3. domain names may not be cached

http://yuiblog.com/blog/2007/04/11/performance-research-part-4/

Summary

What the 80/20 Rule Tells Us about
Reducing HTTP Requests
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/

Browser Cache Usage – Exposed!
http://yuiblog.com/blog/2007/01/04/performance-research-part-2/

When the Cookie Crumbles
http://yuiblog.com/blog/2007/03/01/performance-research-part-3/

Maximizing Parallel Downloads in the
Carpool Lane
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/

14 Rules
(presented as “one dozen rules”)

1. Make fewer HTTP requests
2. Use a CDN
3. Add an Expires header
4. Gzip components
5. Put CSS at the top
6. Move JS to the bottom
7. Avoid CSS expressions
8. Make JS & CSS external
9. Reduce DNS lookups
10. Minify JS
11. Avoid redirects
12. Remove duplicate scripts
13. Turn off ETags
14. Make Ajax cachable and small

Rule 1: Make fewer HTTP requests

CSS sprites

Combined / concatenated JS and CSS
files

image maps

inline (data) images

CSS Sprites

size of combined image is less

http://alistapart.com/articles/sprites

<span style="
background-image: url('sprites.gif');
background-position: -260px -90px;">

Combined Scripts,
Combined Stylesheets

37youtube.com

1.56.5Average

14yahoo.com

13wikipedia.org

22myspace.com

19msn.com

11froogle.google.com

27ebay.com

211cnn.com

118aol.com

13amazon.com

Stylesheet
s

Scripts

Inline (data:) Images

data: URL scheme
data:[<mediatype>][;base64],<data>

<IMG ALT=”Red Star”
SRC="

ajo+w6O/zl5estLv/8/AAAAAAAAAAAAAAAACH5BAEAAAsALAAAAAAMAAwAAAQzcElZyryT
EHyTUgknHd9xGV+qKsYirKkwDYiKDBiatt2H1KBLQRFIJAIKywRgmhwAIlEEADs=">

not supported in IE

avoid increasing size of HTML pages:
put inline images in cached stylesheets

http://tools.ietf.org/html/rfc2397

The end.

Rule 2: Use a CDN

distribute your static content before
distributing your dynamic content

youtube.com

Akamaiyahoo.com

wikipedia.org

Akamai, Limelightmyspace.com

SAVVISmsn.com

google.com

Akamai, Mirror Imageebay.com

cnn.com

Akamaiaol.com

Akamaiamazon.com

Rule 3: Add an Expires header
not just for images

26 days0%0/70/30/32youtube.com

100%

75%

0%

80%

4%

55%

1%

48%

0%

%

n/a4/41/123/23yahoo.com

1 day2/31/16/8wikipedia.org

1 day0/20/20/18myspace.com

34 days3/91/132/35msn.com

454 days0/10/11/23froogle.google.com

140 days0/70/216/20ebay.com

227 days2/110/20/138cnn.com

217 days6/181/123/43aol.com

114 days0/30/10/62amazon.com

Median
Age

ScriptsStylesheetsImages

Rule 4: Gzip components

• you can affect users'
download times

• 90%+ of browsers
support compression

Gzip compresses more

Gzip supported in more browsers

Gzip vs. Deflate

DeflateGzip

67%4.7K73%3.7K14.1KStylesheet

52%0.5K56%0.4K1.0KStylesheet

58%16.6K64%14.5K39.7KScript

66%1.1K67%1.1K3.3KScript

SavingsSizeSavingsSizeSize

Gzip: not just for HTML

somesomexyoutube.com

xxxyahoo.com

xxxwikipedia.org

xxxmyspace.com

deflatedeflatexmsn.com

xxxfroogle.google.com

xebay.com

cnn.com

somesomexaol.com

xamazon.com

StylesheetsScriptsHTML

gzip scripts, stylesheets, XML, JSON
(not images, PDF)

Free YUI Hosting includes:

• Aggregated files

• With Expires headers

• On a CDN

• Gzipped

Rule 5: Put CSS at the top

stylesheets block rendering in IE
http://stevesouders.com/examples/css-bottom.php

solution: put stylesheets in HEAD (per
spec)

avoids Flash of Unstyled Content

use <link> (not @import)

Slowest is actually
the Fastest

Rule 6: Move scripts to the bottom

scripts block rendering of everything
below them in the page

scripts block parallel downloads across
all hostnames

IE and FF
http://stevesouders.com/examples/js-middle.php

What about defer?

script defer attribute is not a solution
– blocks rendering and downloads in FF
– slight blocking in IE

Rule 7: Avoid CSS expressions

Can be used to set CSS properties
dynamically in IE
width: expression(

document.body.clientWidth < 600 ?
“600px” : “auto”);

But problematic because expressions
execute many times
– mouse move, key press, resize, scroll,

etc.

http://stevesouders.com/examples/expression-counter.php

Rule 8: Make JS and CSS external

Inline: bigger HTML but no HTTP request

External: cachable but extra HTTP

Variables:
– page views per user (per session)
– empty vs. full cache stats
– component re-use

External is typically better
– home pages may be an exception due to

cache behavior of browser’s startpage.

Post-Onload Download

inline in front page

download external files after onload
window.onload = downloadComponents;
function downloadComponents() {

var elem = document.createElement("script");
elem.src = "http://.../file1.js";
document.body.appendChild(elem);
...

}

speeds up secondary pages

Dynamic Inlining

start with post-onload download

set cookie after components
downloaded

server-side:
– if cookie, use external
– else, do inline with post-onload

download

cookie expiration date is key

speeds up all pages

Rule 9: Reduce DNS lookups

typically 20-120 ms

block parallel downloads

OS and browser both have DNS
caches

Best practice:

Max 2-4 hosts

Use keep-alive

TTL (Time To Live)

5 minuteswww.youtube.com

1 minutewww.yahoo.com

1 hourwww.wikipedia.org

1 hourwww.myspace.com

5 minuteswww.msn.com

5 minuteswww.google.com

1 hourwww.ebay.com

10 minuteswww.cnn.com

1 minutewww.aol.com

1 minutewww.amazon.com

TTL – how long record can be cached

Browser settings override TTL

Tweaking Browser’s DNS Cache

IE
– DnsCacheTimeout: 30 minutes
– KeepAliveTimeout: 1 minute
– ServerInfoTimeout: 2 minutes

Firefox
– network.dnsCacheExpiration: 1 minute
– network.dnsCacheEntries: 20
– network.http.keep-alive.timeout: 5

minutes
– Fasterfox Extension:

• 1 hour, 512 entries, 30 seconds

Rule 10: Minify JavaScript

no

yes

no

no

yes

yes

yes

no

no

no

Minify
External?

nowww.youtube.com

yeswww.yahoo.com

nowww.wikipedia.org

nowww.myspace.com

yeswww.msn.com

yesfroogle.google.com

nowww.ebay.com

nowww.cnn.com

nowww.aol.com

nowww.amazon.com

Minify Inline?

minify inline scripts, too

Minify vs. Obfuscate

Dojo SavingsJSMin SavingsOriginal

21K (25%)17K (21%)85KAverage

10K (29%)8K (22%)34Kwww.youtube.com

16K (38%)14K (34%)42Kwww.wikipedia.org

24K (28%)23K (27%)88Kwww.myspace.com

24K (25%)19K (20%)98Kwww.cnn.com

4K (10%)4K (10%)44Kwww.aol.com

48K (24%)31K (15%)204Kwww.amazon.com

minify – it's safer

http://crockford.com/javascript/jsmin

http://dojotoolkit.org/docs/shrinksafe

Rule 11: Avoid redirects

3xx status codes – mostly 301 and 302
HTTP/1.1 301 Moved Permanently
Location: http://stevesouders.com/newuri

add Expires headers so redirect
headers are cached

Redirects are worst form of blocking

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Redirects

no

yes – secondary page

yes – secondary page

yes – secondary page

yes – initial page

no

yes – secondary page

yes – initial page

yes – secondary page

no

Redirects

www.youtube.com

www.yahoo.com

www.wikipedia.org

www.myspace.com

www.msn.com

froogle.google.com

www.ebay.com

www.cnn.com

www.aol.com

www.amazon.com

Rule 12: Remove Duplicate Scripts
(this rule was not presented live)

hurts performance
– extra HTTP requests (IE only)
– extra executions

atypical?
– 2 of 10 top sites contain duplicate

scripts

team size, # of scripts

Script Insertion Functions

<?php
function insertScript($jsfile) {

if (alreadyInserted($jsfile)) { return; }

pushInserted($jsfile);

if (hasDependencies($jsfile)) {
$dependencies = getDependencies($jsfile);
for ($i = 0; $i < count($dependencies); $i++) {

insertScript($dependencies[$i]);
}

}

echo '<script type="text/javascript" src="' .
getVersion($jsfile) . '"></script>";

}
?>

Rule 13: Turn off ETags
(this was #12 when presented live)

unique identifier returned in response
ETag: "c8897e-aee-4165acf0"
Last-Modified: Thu, 07 Oct 2004 20:54:08 GMT

used in conditional GET requests
If-None-Match: "c8897e-aee-4165acf0"
If-Modified-Since: Thu, 07 Oct 2004 20:54:08 GMT

Breaks caching:

if ETag doesn't match, can't send 304

Rule 14: Make AJAX cacheable and small
(this rule was not presented live)

XHR, JSON, iframe, dynamic scripts
can still be cached, minified, and
gzipped

a personalized response should still be
cacheable by that person

AJAX Example: Yahoo! Mail Beta

address book XML request
→ GET /yab/[...]&r=0.5289571053069156 HTTP/1.1

Host: us.xxx.mail.yahoo.com
← HTTP/1.1 200 OK

Date: Thu, 12 Apr 2007 19:39:09 GMT
Cache-Control: private,max-age=0
Last-Modified: Sat, 31 Mar 2007 01:17:17 GMT
Content-Type: text/xml; charset=utf-8
Content-Encoding: gzip

address book changes infrequently
– cache it; add last-modified-time in URL

Case Studies

Case Study:

1. moved JS to onload

2. removed redirects

3. used image sprites

4. hosted JS on CDN

5. combined JS files

Case Study:

1/25/06 3/25/07

40-50%40-50%

What about performance
and Web 2.0 apps?

client-side CPU is more of an issue

user expectations are higher

start off on the right foot: care!

measuring is different

select a message in the list view message in preview pane

open messages in their own tabs

Case Study:

calendar

instant
messaging

Case Study:

instant
messaging

Does it meet user expectations?

Case Study:

15.87 s

0 s

0.34 s

1.53 s

1.52 s

12.48 s

Time

18.08 stotal time:

2.10 sconfirm send

2.21 scompose message

6.39 sread message (x3)

4.98 s view inbox folder

2.40 smail.yahoo.com

TimeWork flow

Case Study:

Mail BetaMail BetaMail ClassicMail Classic

0.51 s x 3 =0.51 s x 3 =2.13 s x 3 =2.13 s x 3 =

1.66 s x 3 =1.66 s x 3 =

-12%

-100%

-85%

-76%

-70%

+420%

Delta

15.87 s

0 s

0.34 s

1.53 s

1.52 s

12.48 s

Time

18.08 stotal time:

2.10 sconfirm send

2.21 scompose message

6.39 sread message (x3)

4.98 s view inbox folder

2.40 smail.yahoo.com

Time

Case Study:

Mail BetaMail BetaMail ClassicMail Classic

-12%

-100%

-85%

-76%

-70%

+420%

Delta

15.87 s

0 s

0.34 s

1.53 s

1.52 s

12.48 s

Time

18.08 stotal time:

2.10 sconfirm send

2.21 scompose message

6.39 sread message (x3)

4.98 s view inbox folder

2.40 smail.yahoo.com

Time

Case Study:

Mail BetaMail BetaMail ClassicMail Classic

-12%

-100%

-85%

-76%

-70%

+420%

Delta

15.87 s

0 s

0.34 s

1.53 s

1.52 s

12.48 s

Time

18.08 stotal time:

2.10 sconfirm send

2.21 scompose message

6.39 sread message (x3)

4.98 s view inbox folder

2.40 smail.yahoo.com

Time

Case Study:

Mail BetaMail BetaMail ClassicMail Classic

Live Analysis

IBM Page Detailer

packet sniffer

Windows only

IE, FF, any .exe
c:\windows\wd_WS2s.ini
Executable=(NETSCAPE.EXE),(NETSCP6.EXE),(firef

ox.exe)

free trial, $300 license

http://alphaworks.ibm.com/tech/pagedetailer

http://alphaworks.ibm.com/tech/pagedetailer

Fasterfox

measures load time of pages

alters config settings for faster
loading

Firefox extension

free

http://fasterfox.mozdev.org/

LiveHTTPHeaders

view HTTP headers

Firefox extension

free

http://livehttpheaders.mozdev.org/

Firebug

web development evolved

inspect and edit HTML

tweak and visualize CSS

debug and profile JavaScript

monitor network activity (caveat)

Firefox extension

free

http://getfirebug.com/

http://getfirebug.com/

YSlow

performance lint tool

grades web pages for each rule

Firefox extension

Yahoo! internal tool

Conclusion

Takeaways

focus on the front-end

harvest the low-hanging fruit

reduce HTTP requests

enable caching

you do control user response times

LOFNO – be an advocate for your
users

Links

book: http://www.oreilly.com/catalog/9780596514211/
examples: http://stevesouders.com/examples/
image maps: http://www.w3.org/TR/html401/struct/objects.html#h-13.6
CSS sprites: http://alistapart.com/articles/sprites
inline images: http://tools.ietf.org/html/rfc2397
jsmin: http://crockford.com/javascript/jsmin
dojo compressor: http://dojotoolkit.org/docs/shrinksafe
HTTP status codes: http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
IBM Page Detailer: http://alphaworks.ibm.com/tech/pagedetailer
Fasterfox: http://fasterfox.mozdev.org/
LiveHTTPHeaders: http://livehttpheaders.mozdev.org/
Firebug: http://getfirebug.com/
YUIBlog: http://yuiblog.com/blog/2006/11/28/performance-research-part-1/

http://yuiblog.com/blog/2007/01/04/performance-research-part-2/
http://yuiblog.com/blog/2007/03/01/performance-research-part-3/
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/

YDN: http://developer.yahoo.net/blog/archives/2007/03/high_performanc.html
http://developer.yahoo.net/blog/archives/2007/04/rule_1_make_few.html

CC Images Used
“Zipper Pocket” by jogales: http://www.flickr.com/photos/jogales/11519576/
“Need for Speed” by Amnemona:

http://www.flickr.com/photos/marinacvinhal/379111290/
“I wonder what flavour it is?” by blather:

http://www.flickr.com/photos/deadlyphoto/411770353/
“takeout boxes from Grand Shanghai” by massdistraction:

http://www.flickr.com/photos/sharynmorrow/11263821/
“takeout” by dotpolka : http://www.flickr.com/photos/dotpolka/249129144/
“ice cream cone melting/rome” by Megandavid :

http://www.flickr.com/photos/megandavid/189332042/
“nikon em bokeh” by dsevilla: http://www.flickr.com/photos/dsevilla/249202834/
“maybe” by Tal Bright: http://www.flickr.com/photos/bright/118197469/
“how do they do that” by Fort Photo:

http://www.flickr.com/photos/fortphoto/388825145/
“Gorgeous iceberg 7 [Le Toit du Monde]” by Adventure Addict

http://www.flickr.com/photos/adventureaddict/35290307/
“molasses-spice cookies” ilmungo: http://www.flickr.com/photos/ilmungo/65345233/
“Driving is fun” by Ben McLeod: http://www.flickr.com/photos/benmcleod/59948935/
“Dozen eggs” by aeA: http://www.flickr.com/photos/raeallen/96238870/
“Max speed 15kmh” by xxxtoff: http://www.flickr.com/photos/xxxtoff/219781763/
“Stairway to heaven” ognita: http://www.flickr.com/photos/ognita/503915547/

nate@koechley.com
nate.koechley.com/blog
nate.koechley.com/talks/2007/atmedia-london

Thanks again to Steve Souders & Tenni Theurer

