
Getting Started

To use the Event and Custom Event Utilities, include the following source files in your web page with
the script tag:

Where these files come from: The files included using the text above will be served from Yahoo! servers; see
"Serving YUI Files from Yahoo!" for important information about this service. JavaScript files are minified,
meaning that comments and white space have been removed to make them more efficient to download. To use
the full, commented versions or the -debug versions of YUI JavaScript files, please download the library
distribution and host the files on your own server.

Order matters: As is the case generally with JavaScript and CSS, order matters; these files should be included
in the order specified above. If you include files in the wrong order, errors may result.

The Event and Custom Event components are defined by YAHOO.util.Event and
YAHOO.util.CustomEvent, respectively.

Basic Events

To attach an event handler to the DOM, simply define your event handler and pass the event handler
to the Event Utility along with a reference to the event for which you want to listen and the element to
which you want attach the handler:

These lines of code:

Declare a variable oElement and assign a specific element in the DOM to that variable.
Define a callback function, fnCallback(e), to handle the specified event.
Call the addListener method on the YAHOO.util.Event object to bind an event to the
DOM element. The addListener method requires three arguments: the element the event
is bound to (oElement), the event to bind ("click", as a string), and the callback function
(fnCallback).

To attach an event handler by element ID, use this code:

This example is similar to the first. However, in this case we are identifying the element by its HTML
ID ("elementid" as a string) rather than by passing in a variable pointing to the element object.
The Event Utility attempts to find the DOM element by this id value; should it fail to find the element
immediately, it continues to seek the element for up to 15 seconds after the page has loaded. This
"automatic deferral" enables you, in many cases, to write your event attachment code directly into
your script rather than separating it out in a function that runs only after the page has loaded.

To attach an event handler to multiple elements, use this code:

These lines:

Declare an array of ids corresponding to the HTML ID attributes of elements on the page.
The array can contain HTML IDs as strings (as shown above); it can also accept variable
object references.
Define a callback function, fnCallback(e), to handle the specified event.
Call the addListener method of YAHOO.util.Event to bind an event to the DOM
element. In this case the first argument to the addListener method is the ids array rather
than a single element or ID.

See the examples in Using Event and Using CustomEvent or the API Documentation for more details.
See also the first Event Utility example for a tutorial on how to attach events using addListener.

Note: Developers often wonder where they can find a comprehensive list of DOM events (e.g., "click",
"mousemove", etc.) that shows in which browsers each event is supported. As far as we know, no
perfect list exists. Danny Goodman's DHTML: The Definitive Reference may have the most
comprehensive information of this kind; PPK's Event Compatibility Table on quirksmode may have the
best compatibility assessment online. The Event Utility does not place any constraints on the events
for which you attach handlers; it will attempt to attach listeners for any event name you provide. It's
your responsibility to make sure that the event you're using is one that is supported in the browsers
for which you're developing.

Using Event

This section describes several common features and uses of the Event Utility. It contains these
sections:

Handler Attachment Deferral
Automatic Scope Correction
Automatic Event Object Browser Abstraction
Send an Arbitrary Object to the Event Handler

Handler Attachment Deferral

If you attempt to attach a handler to an element before the page is fully loaded, the Event Utility
attempts to locate the element. If the element is not available, Event periodically checks for the
element until the window.onload event is triggered. Handler deferral only works when attaching
handlers by element id; if you attempt to attach to a DOM object reference that is not yet available,
the component has no way of knowing what object you are trying to access.

Automatic Scope Correction

Event handlers added with Internet Explorer's attachEvent method are executed in the window
scope, so the special variable this in your callback references the window object. This is not very
useful. Even more vexing is the fact that the event object in Internet Explorer does not provide a
reliable way of identifying the element on which the event was registered; standards-based browsers
supply this as the currentTarget property, but this property is not present in IE.

By default, the Event Utility automatically adjusts the execution scope so that this refers to the DOM
element to which the event was attached, conforming to the behavior of addEventListener in
W3C-compliant browsers. Moreover, the event subscriber can override the scope so that this refers
to a custom object passed into the addListener call.

Automatic Event Object Browser Abstraction

The first parameter your callback receives when the event fires is always the actual event object.
There is no need to look at window.event.

Send an Arbitrary Object to the Event Handler

It is common in object-oriented JavaScript development to assign a custom object's member method
to listen for an event, access internal properties and execute internal methods in response. Because
the event handler is (by default) executed in the scope of the element, not in the scope of the listener
method's parent object, the custom object's properties are not available through the this property as
one might expect. You can work around this in a number of ways: (1) by creating closures or (2)
creating circular references between your custom object and the element.

The Event Utility enables you to pass your custom objects directly to the event handler so you don't
have to use any of these (potentially leaky) methods to gain access to that custom object. Pass your
custom object as the fourth parameter to the addListener method, and that object is passed in as
the second parameter to your callback function (the first is the event object itself):

Removing Events

You can remove event listeners by calling YAHOO.util.Event.removeListener with the same
event signature that you used to create the event.

If it is not convenient to save a reference to the original callback you used to register the event, and
you know you are the only listener to the event, you can call removeListener without the function
argument. Doing so will remove all listeners added via addListener for the specified element and
event type.

YAHOO.util.Event.getListeners lets you retrieve all of the listeners that were attached to an
element via addListener. Optionally, you can retrieve all bound listeners of a given type:

YAHOO.util.Event.purgeElement lets you remove all listeners that were registered via
addListener from an element. Optionally, a specific type of listener can be specified. In addition,
The element's children can also be purged.

Using the onAvailable and onContentReady Methods

onAvailable lets you define a function that will execute as soon as an element is detected in the
DOM. The intent is to reduce the occurrence of timing issues when rendering script and html inline. It
is not meant to be used to define handlers for elements that may eventually be in the document; it is
meant to be used to detect elements you are in the process of loading.

The argument signature for onAvailable is similar to that of addListener, omitting only the event
type.

The onContentReady method shares an identical syntax with onAvailable. The material
difference between the two methods is that onContentReady waits until both the target element and
its nextSibling in the DOM respond to getElementById. This guarantees that the target
element's contents will have loaded fully (excepting any dynamic content you might add later via
script). If onContentReady never detects a nextSibling, it fires with the window.load event.

Using the onDOMReady Method

onDOMReady lets you define a function that will execute as soon as the DOM is in a usable state.
The DOM is is not deemed "usable" until it is structurally complete; a number of bugs, primarily in IE,
can lead to the browser crashing or failing to load the page successfully if scripts attempt to insert
information into the DOM prior to the DOM being in a complete state.

DOM readiness is achieved before images have finished loading, however, so onDOMReady is often
an excellent alternative to using the window object's load event.

Using the CustomEvent Object

The CustomEvent object enables you to define and use events not available by default in the DOM —
events that are specific to and of interest in your own application. This section describes several
common uses of the CustomEvent component and provides some examples. It contains these
sections:

Defining a Custom Event
Subscribing (Listening) to a Custom Event
Creating a Callback
Triggering the Event

Defining a Custom Event

To define a custom event type, create a new instance of CustomEvent:

The CustomEvent constructor creates a new Custom Event; it takes one required parameter and three
optional parameters:

type — The type of event. This string is returned to listeners that receive this event so that
they know what event occurred.
scope — The scope in which listener methods should fire; if you do not specify a scope
here, the default scope will be the window object.
silent — false by default. If true, the activity for this event will not be logged when in debug
mode.
signature — specifies the signature for the event listeners. The choices are:

YAHOO.util.CustomEvent.LIST (the default):
param1: event name
param2: array of arguments sent to fire
param3: (optional) a custom object supplied by the subscriber

YAHOO.util.CustomEvent.FLAT
param1: the first argument passed to fire. If you need to pass multiple
parameters, use and array or object literal
param2: a custom object supplied by the subscriber

The event subscriber can override the scope so that this refers to the custom object that was
passed into the subscribe method.

Subscribing (Listening) to a Custom Event

To subscribe to a custom event, use its subscribe method:

In this example, event1 is the Custom Event object that was created in the previous section. Use
the subscribe method to listen to that event. The subscribe method takes two parameters. The
first is the callback; the second is a custom object you can define (see Send an Arbitrary Object to the
Event Handler, earlier in this document). When the event is triggered, the callback is called and the
custom object is passed to that callback as the third argument (when using the default argument
signature; when using the flat signature, the custom object is the second argument).

Creating a Callback

To create a callback for a custom event:

In this example the type argument is the event type ("event1" in this case), args is an array of all of
the arguments that were passed to the Custom Event's fire method, and me is the custom object we
passed in when we subscribed to the event.

Triggering the Event

To trigger or fire a custom event:

In this example t1 is the test object we created, event1 is the CustomEvent instance and d1 is our
test data. This example produces the following output:

YUI on Mobile: Using Event Utility with "A-Grade" Mobile Browsers

About this Section: YUI generally works well with mobile browsers that are based on A-Grade browser
foundations. For example, Nokia's N-series phones, including the N95, use a browser based on Webkit — the
same foundation shared by Apple's Safari browser, which is found on the iPhone. The fundamental challenges in
developing for this emerging class of full, A-Grade-derived browsers on handheld devices are:

Screen size: You have a much smaller canvas;
Input devices: Mobile devices generally do not have mouse input, and therefore are missing some or
all mouse events (like mouseover);
Processor power: Mobile devices have slower processors that can more easily be saturated by
JavaScript and DOM interactions — and processor usage affects things like battery life in ways that
don't have analogues in desktop browsers;
Latency: Most mobile devices have a much higher latency on the network than do terrestrially
networked PCs; this can make pages with many script, css or other types of external files load much
more slowly.

There are other considerations, many of them device/browser specific (for example, current versions of the
iPhone's Safari browser do not support Flash). The goal of these sections on YUI User's Guides is to provide
you some preliminary insights about how specific components perform on this emerging class of mobile devices.
Although we have not done exhaustive testing, and although these browsers are revving quickly and present a
moving target, our goal is to provide some early, provisional advice to help you get started as you contemplate
how your YUI-based application will render in the mobile world.

More Information:

Challenges of Interface Design for Mobile Devices - YUI Blog article by Lucas Pettinati, Yahoo! Sr.
Interaction Designer.

The Event Utility works in any browser that has DOM2 event support. However, the user interaction
model of mobile browsers can make certain browser events behave in a different manner than
expected, or not at all.

The iPhone's touch interface supports gestures that prevent certain mouse events from working
correctly. For instance, the 'mousedown' event does not fire when the user initially touches the
screen over an element. It only fires once the user's finger is removed (the mousedown, mouseup,
and click events all fire at this moment). This makes is difficult or impossible to provide certain
DHTML interactions that rely on these events, drag and drop being the most obvious.

Since the iPhone has a touch interface, there is no mouse cursor. This means that there are no hover
states for elements, and no mouseover events.

Support & Community

The YUI Library and related topics are discussed on the on the ydn-javascript mailing list.

In addition, please visit the YUIBlog for updates and articles about the YUI Library written by the
library's developers.

Filing Bugs & Feature Requests

The YUI Library's public bug tracking and feature request repositories are located on the YUI
SourceForge project site. Before filing new feature requests or bug reports, please review our
reporting guidelines.

Guidelines for YUI feature requests and bug reports.
Review current bug list or file a new bug.
Review current feature requests or file a new feature request.

Event Utility Cheat Sheet:

Download full set of cheat sheets.

Event Utility Examples:
Simple Event Handling and
Processing
Using Custom Events
Using onAvailable,
onContentReady, and
onDOMReady
Using Event Utility and Event
Delegation to Improve
Performance

Other YUI Examples That Make
Use of the Event Utility:

Implementing Container
Keyboard Shortcuts with
KeyListener (included with
examples for the Container
Family)

More Reading about Dom
Events and the YUI Event
Utility:

Event Compatibility Tables, by
PPK (quirksmode); a list of
basic DOM events that breaks
out their compatibility by
browser version
Event-Driven Application
Design, by Christian Heilmann
Event Delegation versus Event
Handling, by Christian Heilmann
Forget addEvent, use Yahoo!'s
Event Utility, by Dustin Diaz
Agent YUI: Mission 1 —
Attaching Events (the easy
way), by Klaus Komenda

YUI Event on del.icio.us:

bookmark on del.icio.us

tags: yui javascript library
event ajax web programming
ui events documentation yahoo

saved by 57 people

Copyright © 2007 Yahoo! Inc. All rights reserved.
Privacy Policy - Terms of Service - Copyright Policy - Job Openings

Developer Network Home Help

1 <!-- Dependency -->
2 <script type="text/javascript" src="http://yui.yahooapis.com/2.3.1/build/yahoo/yahoo-min.js"
3
4 <!-- Event source file -->
5 <script type="text/javascript" src="http://yui.yahooapis.com/2.3.1/build/event/event-min.js"

view plain | print | ?

1 var oElement = document.getElementById("elementid");
2 function fnCallback(e) { alert("click"); }
3 YAHOO.util.Event.addListener(oElement, "click", fnCallback);

view plain | print | ?

1 function fnCallback(e) { alert("click"); }
2 YAHOO.util.Event.addListener("elementid", "click", fnCallback);

view plain | print | ?

1 // array can contain object references, element ids, or both
2 var ids = ["el1", "el2", "el3"];
3 function fnCallback(e) { alert(this.id); }
4 YAHOO.util.Event.addListener(ids, "click", fnCallback);

view plain | print | ?

1 function MyObj(elementId, customProp, callback) {
2 this.elementId = elementId;
3 this.customProp = customProp;
4 this.callback = callback;
5 }
6
7 MyObj.prototype.addClickHandler = function() {
8 YAHOO.util.Event.addListener(this.elementId, "click", this.callback, this);
9 };

10
11 function fnCallback1(e, obj) {
12 // the execution context is the html element ("myelementid")
13 alert(this.id + " click event: " + obj.customProp);
14 }
15
16 function fnCallback2(e, obj) {
17 // the execution context is the custom object
18 alert("click event: " + this.customProp);
19 }
20
21 var myobj = new MyObj("myelementid", "hello world", fnCallback1);
22 var mydata = {id: 10 };
23
24 // One way to add the handler:
25 myobj.addClickHandler();
26
27 // This will do the same thing:
28 YAHOO.util.Event.addListener("myelementid", "click", fnCallback1, myobj);
29
30 // If we pass true as the final parameter, the custom object that is passed
31 // is used for the execution scope (so it becomes "this" in the callback).
32 YAHOO.util.Event.addListener("myelementid", "click", fnCallback2, myobj, true);
33
34
35 // Alternatively, we can assign a completely different object to be the
36 // execution scope:
37 YAHOO.util.Event.addListener("myelementid", "click", fnCallback2, mydata, myobj);

view plain | print | ?

1 YAHOO.util.Event.removeListener("myelementid", "click", fnCallback1);
view plain | print | ?

1 YAHOO.util.Event.removeListener("myelementid", "click");
view plain | print | ?

1 // all listeners
2 var listeners = YAHOO.util.Event.getListeners(myelement);
3 for (var i=0; i<listeners.length; ++i) {
4 var listener = listeners[i];
5 alert(listener.type); // The event type
6 alert(listener.fn); // The function to execute
7 alert(listener.obj); // The custom object passed into addListener
8 alert(listener.adjust); // Scope correction requested, if true, listener.obj
9 // is the scope, if an object, that object is the scope

10 }
11
12 // only click listeners
13 var listeners = YAHOO.util.Event.getListeners(myelement, "click");

view plain | print | ?

1 // all listeners
2 YAHOO.util.Event.purgeElement(myelement);
3 // all listeners and recurse children
4 YAHOO.util.Event.purgeElement(myelement, true);
5 // only click listeners
6 YAHOO.util.Event.purgeElement(myelement, false, "click");

view plain | print | ?

1 <script type="text/javascript">
2
3 function TestObj(id) {
4 YAHOO.util.Event.onAvailable(id, this.handleOnAvailable, this);
5 }
6
7 TestObj.prototype.handleOnAvailable = function(me) {
8 alert(this.id + " is available");
9 }

10
11 var obj = new TestObj("myelementid");
12 </script>
13
14 <div id="myelementid">my element</div>

view plain | print | ?

1 <script type="text/javascript">
2
3 function init() {
4 YAHOO.util.Dom.setStyle("hidden_element", "visibility", "");
5 }
6 YAHOO.util.Event.onDOMReady(init);
7
8 // As with addListener, onAvailable, and onContentReady, you can pass a data object and adjust the scope
9 // YAHOO.util.Event.onDOMReady(init, data, scope);

10
11 </script>

view plain | print | ?

1 // custom object
2 function TestObj(name) {
3 this.name = name;
4 // define a custom event
5 this.event1 = new YAHOO.util.CustomEvent("event1", this);
6 }

view plain | print | ?

1 // a custom consumer object that will listen to "event1"
2 function Consumer(name, testObj) {
3 this.name = name;
4 this.testObj = testObj;
5 this.testObj.event1.subscribe(this.onEvent1, this);
6 }

view plain | print | ?

1 Consumer.prototype.onEvent1 = function(type, args, me) {
2 alert(" this: " + this +
3 "\n this.name: " + this.name +
4 "\n type: " + type +
5 "\n args[0].data: " + args[0].data +
6 "\n me.name: " + me.name);
7 }

view plain | print | ?

1 // random test data to be used as an event argument
2 function TestData(data) {
3 this.data = data;
4 }
5
6 // create an instance of our test object
7 var t1 = new TestObj("mytestobj1");
8
9 // create the event consumer, passing in the custom

10 // object so that it can subscribe to the custom event
11 var c1 = new Consumer("mytestconsumer1", t1);
12
13 // create a data object that will be passed to the consumer when the event fires
14 var d1 = new TestData("mydata1");
15
16 // fire the test object's event1 event, passing the data object as a parameter
17 t1.event1.fire(d1);

view plain | print | ?

1 this: [object Object]
2 this.name: mytestobj1
3 type: event1
4 args[0].data: mydata1
5 me.name: mytestconsumer1

view plain | print | ?

enter email address

Site Search Search

Yahoo! UI Library: Event Utility

On This Page:
Getting Started
Using the Event Utility
Using the onAvailable and
onContentReady Methods
Using the onDOMReady Method
Using the CustomEvent Object
Support & Community
Filing Bugs and Feature Requests

Quick Links:
Examples: Explore examples of the
Event Utility in action.
API Documentation: View the full API
documentation for the Event Utility.
Release Notes: Detailed change log
for the Event Utility.
License: The YUI Library is issued
under a BSD license.
Download: Download the Event Utility
as part of the full YUI Library on
SourceForge.

Yahoo! UI Library: Event Utility
The YUI Event Utility facilitates the creation of event-driven applications in the browser by giving
you a simplified interface for subscribing to DOM events and for examining properties of the
browser's Event object. The Event Utility package includes the Custom Event object; Custom
Events allow you to "publish" the interesting moments or events in your own code so that other
components on the page can "subscribe" to those events and respond to them. The Event Utility
package provides the following features:

A flexible method of attaching an event handler to one or more elements
Automatic deferral of handler attachment for elements that are not yet available
Automatic scope correction, optional scope assignment
Automatic event object browser abstraction
The ability to include an arbitrary object to be sent to the handler with the event
Utility methods to access event properties that require browser abstraction
Automatic listener cleanup
A mechanism for creating and subscribing to custom events
The ability to execute functions as soon as a DOM element is detected

Yahoo! UI Library
Home
YUIBlog
YUI Discussion Forum
YUI on Sourceforge
API Documentation
YUI Examples Gallery
Powered by YUI
YUI Theater
YUI License

YUI Articles
YUI FAQ
Graded Browser Support
Skinning YUI
Bug Reports/Feature Requests
Serving YUI Files from Yahoo!
Security Best Practices

YUI Components
Animation
AutoComplete
Browser History Manager
Button
Calendar
Color Picker
Connection Manager
Container
DataSource
DataTable
Dom
Drag & Drop
Element
Event
ImageLoader [experimental]
Logger
Menu
Rich Text Editor
Slider
TabView
TreeView
Yahoo Global Object
YUI Loader
YUI Test
Reset CSS
Base CSS
Fonts CSS
Grids CSS

YUI Tools
YUI Compressor

Yahoo! Developer Network
Home
About Us
Developer Network Blog
YDN FAQ
Support Communities
Working Examples

http://developer.yahoo.com/yui/download/
http://developer.yahoo.com/yui/articles/faq/#debug
http://developer.yahoo.com/yui/articles/hosting/
http://developer.yahoo.com/yui/examples/event/simple.html
http://developer.yahoo.com/yui/docs/YAHOO.util.CustomEvent.html
http://developer.yahoo.com/yui/event/#event
http://developer.yahoo.com/yui/event/#customevent
http://www.quirksmode.org/js/events_compinfo.html
http://www.oreillynet.com/catalog/9780596527402/
http://developer.yahoo.com/yui/event/#deferral
http://developer.yahoo.com/yui/event/#scope
http://developer.yahoo.com/yui/event/#abstraction
http://developer.yahoo.com/yui/event/#customobject
http://developer.yahoo.com/yui/event/#customobject
http://developer.yahoo.com/yui/event/#customdefine
http://developer.yahoo.com/yui/event/#customsubscribe
http://developer.yahoo.com/yui/event/#customcallback
http://developer.yahoo.com/yui/event/#customfire
http://developer.yahoo.com/yui/event/#customobject
http://yuiblog.com/blog/2007/10/02/challenges-of-interface-design-for-mobile-devices/
http://groups.yahoo.com/group/ydn-javascript/
http://yuiblog.com/
http://sourceforge.net/projects/yui
http://developer.yahoo.com/yui/articles/reportingbugs/
http://developer.yahoo.com/yui/articles/reportingbugs/
http://sourceforge.net/tracker/?func=add&group_id=165715&atid=836476
http://sourceforge.net/tracker/?group_id=165715&atid=836476
http://sourceforge.net/tracker/?group_id=165715&atid=836479
http://sourceforge.net/tracker/?func=add&group_id=165715&atid=836479
http://yuiblog.com/assets/pdf/cheatsheets/event.pdf
http://developer.yahoo.com/yui/docs/assets/cheatsheets.zip
http://developer.yahoo.com/yui/examples/event/eventsimple.html
http://developer.yahoo.com/yui/examples/event/custom-event.html
http://developer.yahoo.com/yui/examples/event/event-timing.html
http://developer.yahoo.com/yui/examples/event/event-delegation.html
http://developer.yahoo.com/yui/examples/container/keylistener.html
http://developer.yahoo.com/yui/container/index.html
http://www.quirksmode.org/js/events_compinfo.html
http://yuiblog.com/blog/2007/01/17/event-plan/
http://icant.co.uk/sandbox/eventdelegation/
http://www.dustindiaz.com/yahoo-event-utility/
http://www.klauskomenda.com/archives/2007/10/14/agent-yui-mission-1-attaching-events-the-easy-way/
http://del.icio.us/post?url=http%3A%2F%2Fdeveloper.yahoo.com%2Fyui%2Fevent%2F
http://del.icio.us/tag/event
http://del.icio.us/tag/programming
http://del.icio.us/tag/ui
http://del.icio.us/tag/events
http://del.icio.us/tag/library
http://del.icio.us/tag/javascript
http://del.icio.us/tag/ajax
http://del.icio.us/tag/web
http://del.icio.us/tag/yui
http://del.icio.us/tag/documentation
http://del.icio.us/tag/yahoo
http://del.icio.us/url/bb2684eb158908c0eb2ada125afcd492
http://developer.yahoo.com/
http://docs.yahoo.com/info/copyright/copyright.html
http://privacy.yahoo.com/privacy/us/devel/index.html
http://docs.yahoo.com/info/terms/
http://careers.yahoo.com/
http://help.yahoo.com/help/us/ysearch
http://developer.yahoo.com/
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#
http://developer.yahoo.com/yui/event/#start
http://developer.yahoo.com/yui/event/#event
http://developer.yahoo.com/yui/event/#onavailable
http://developer.yahoo.com/yui/event/#ondomready
http://developer.yahoo.com/yui/event/#customevent
http://developer.yahoo.com/yui/event/#support
http://developer.yahoo.com/yui/event/#filingbugs
http://developer.yahoo.com/yui/examples/event/index.html
http://developer.yahoo.com/yui/docs/module_event.html
http://developer.yahoo.com/yui/build/event/README
http://developer.yahoo.com/yui/license.html
http://developer.yahoo.com/yui/download/

